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Public policy on epidemics is now and always has been driven by models of disease spread. There have 

been many modification and enhancements over the past century, but the benchmark model from 

which all other depart is the “SIR model”, developed by Kermack and McCormack in 1927. SIR stands for 

the three “stocks” or “compartments” that constitute the population. S is the number of susceptible 

individuals who would come down with a disease if exposed, I is the number of infectious individuals, 

and R is the number of recovered individuals. People “flow” from the stock of susceptible to infectious 

and from infectious to recovered at variable rates. Those rates are, themselves, a function of the 

number of people in each stock. (Daley, Daryl. J. and Gani, J. M. 1999) 

The Model 
Models such as this are called “system dynamics” models. They simplify the system in question to a set 

of stocks and flows. The most common way to visualize this as a set of tanks and pipes. As the “tank” of 

infectious individuals goes up, the rate at which people recover from the disease goes up as well. When 

flows depend on stocks, the relationship is a “feedback” loop. (Sterman 2018) 

Diagrammatically, the SIR model is drawn as follows: 

 

This shows the flow of individuals from susceptible to infectious to recovered. The total population, N, is 

fully contained within the three “tanks”, so that S + I + R = N.  

There are three feedback loops. I teach my systems dynamics students to name the feedback loops 

because it makes it easier to refer back to the different portions of the model. The depletion feedback 

loop controls the stock of susceptibles, S. This depends on the size of the susceptible population as well 

as the size of the infectious population. It’s a balancing loop for the susceptible population because, as 

the susceptible population gets smaller the rate of infection gets slower. The contagion loop is a 

reinforcing or positive feedback loop because, as the number of infectious individuals grows, so does the 

growth rate of infectious individuals. Finally, the recovery loop balances the infectious populations 

because the rate of recovery gets smaller when there are fewer people to recover.  
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This yields a system of differential equations: 
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In words, these equations set the instantaneous change in each population to a value that depends on 

the populations themselves. Differential equations are characterized by such reflexive relationships. The 

third, and simplest, says that the rate at which people get better (in terms of people per day) depends 

only on how many sick people there are. A country or a city with a large number of infectious individuals 

will have a large number recover every day. (A technicality, R, can actually be taken to mean removed, 

so that this would include those who die as well.)  

The two constants in this epidemic are the recovery rate, γ, and the infectious rate, β. Their inverses are 

sometimes easier to understand. The inverse of the recovery rate is the duration of the infectious 

period. The infectious rate β is determined by the contact rate and the probability that a contact results 

in an infection. The infectious number for patient zero, R0, is give by the ratio of the infectious rate to the 

recovery rate:    0R



= . If people recover faster than they infect, an epidemic can’t take place. 

The Algorithm 
This system of differential equations is called a second order system because they include terms that are 

the product of two variables. The first and second include the product of S and I. This means they are 

difficult to solve. (“Solve” means to express the three stocks as equations in time, depending only on the 

system constants.) For special cases the SIR equations have been solved, but for the general analysis of 

the disease it is more typical to simulate or compute the trajectory. That means, simply, to convert the 

differential equations to difference equations, with the differences set for a unit time step (in this case, 

days). The SIR difference equations would be: 
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This becomes much simpler to adapt to an algorithm where, for example, 1t tS S S+ = +  .  

The Simulation 
The output trajectory of the three stocks in such an algorithm for a seven-day disease and a β of 0.6 

infections per day model is given by: 



 

One of the key decision parameters for the model is the reduction of the contact rate. If infections per 

infectious individual were reduced, the trajectories would look like this: 



 

As a result, one can see that by cutting the contact rate in half, we move from having a peak infectious 

population of over 450,000 to 290,000, a 64% reduction. We also buy time. The peak day moves from 

day 33 to day 52.  

Conclusions 
The SIR model has been expanded and adjusted extensively. It is still, however, the grandfather of many 

modern simulations and its key parameter, R0, remains one of the modern disease metrics. It has utility 

in its simplicity. This is demonstrated by the fact that, with merely a few pages of text and three 

equations, we can demonstrate the primary COVID-19 response strategy of every government. (Chen 

2015) 
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