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Abstract. An agent-based model was constructed to extend the analytic scope
of the theoretical solutions to the “Leveler” or “averaging” model, a simple fi-
nite Markov information exchange (FMIE) model. It was demonstrated that
varying activation patterns leads to significant differences in the convergence
rate. Only random asynchronous activation delivered convergence rates predict-
ed by theory. Other activation patterns show different behavior, and activation
based on the internal state of the agent or “endogenous” activation led to con-
vergence rates furthest from the theoretical values.
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1 Background

Agent-based models have found wide use in the social sciences, in ecological and
biological sciences where they are often called 'individual-based models' and even in
the physical sciences. Constructing such models requires a number of fundamental
design decisions, such as:

e How many agents?

e How will agents move, if at all?

o How the agents perceive their environment?

o Will agents be connected, e.g. on a network?

An additional key element of agent definition that must be specified is the activation
scheme, sometimes referred to as ‘scheduling’ or ‘updating’. This is simply the order-
ing of execution of the agents in code. For two decades, agent-based model builders
have known that different activation schema produce different results [1-4] in some
models, and certainly changing the activation scheme will modify the states of indi-
vidual agents, but it is an open question as to whether this is a general phenomenon at
the aggregate level, or one that appears rarely and is of little consequence.
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Subsequent research has shown that activation is important to model execution
and, depending on the activation scheme, to aggregate outcomes. The most consistent
difference appear when activation depends on the state of the agents, a process called
endogenous activation [5]. It is also known that activation can be important in models
that seek to support actual decision, i.e. applied models and simulations [6, 7].

This earlier research treated the activation question either as a nuisance, hindering
the accurate construction of replications of published models, or as a potential tool to
replicate real-world behavior [6, 8]. It was also shown that activation may change the
dynamics of a model so much that the design of the experiment needs to be reconsid-
ered [7].

2 Co-evolution of Analytical and Computational Approaches

Varying the agent activation scheme can have another impact on modeling and sys-
tem analysis: simulations with different activation schemes can allow researchers to
examine system behavior that is more complex, variable, or heterogeneous than that
postulated in a theoretical construct. In other words, activation can be one of the mod-
el specifications that can be varied as we harness the power of simulation and move
beyond equation-based descriptions of system behavior.

For agent models of any sophistication it is usually the case that succinct mathe-
matical models cannot be readily written down, or even if they can, they cannot be
easily manipulated or solved. Computational agents help us to 'solve' such models and
in this they are a substitute for analytical approaches. But once an intuitive under-
standing of a model is developed by making many realizations, it is often possible to
then develop new mathematical abstractions for how the model behaves. It is in this
sense that we can speak about the co-evolution of analytical and computational ap-
proaches.

3 An Agent Model of Distributed Exchange Processes

We focus on a simple model of interacting agents that has a convenient analog in
interacting particle systems. This type of relationship has stirred considerable interest
among advanced researchers who seek to combine the mathematics with complexity
theory. One team, for example, claims to demonstrate that the field of ‘out-of-
equilibrium’ statistical physics is uniquely appropriate for understanding complex
system dynamics. Such a fusion of the fields can help to explain the ubiquitous ap-
pearance of non-stationary and non-ergodic statistical processes and inverse power-
law statistical distributions [9]. Markov processes have proven useful in understand-
ing and modeling the negotiation process [10]. More afield (and, perhaps less directly
related), the broad field of Markov Chain Monte Carlo methods, and its combination
with evolutionary algorithms, has also been applied to the information exchange pro-
cess. While the models bear little resemblance to agent-based models, the extensive
application of ideas first developed for physics and chemistry to search algorithms
(among other problems) [11] show that this is a fecund combination of disciplines.



The fusion of stochastic particle physics and social systems analysis is also taking
place in the opposite direction: social scientists are finding new applications that bring
the rigor and mature theory to their emergent problems. For example, Cai and Ishii
have started with straightforward social science questions — the formation of a con-
sensus and the distribution of wealth — and solved the question of convergence using
defined and quantized Markov chains [12]. In their conclusions, however, the authors
point to a major issue in applying this extensive mathematical treatment to real world
situations. In their final remark (Remark 16), Cai and Ishii note that extending their
results becomes difficult if the topologies of agent interactions are less well defined.
They don’t mention this, but if the agent interaction topologies are inconstant in time,
extension of this mathematical approach may be unachievable.

4 Theoretical Baseline: Assumptions, Derivations, Predictions

Interacting Particle Systems have been well-defined mathematically. An elegant theo-
ry based on the statistics of continuous time Markov chains provides mathematical
solutions (once the system parameters are known) for convergence rates, steady-state
distributions, mean arrival times (for a given state), and other outcome behaviors of
interest.

Aldous, in exploring this theory, blends interacting particle systems with social
systems analysis, and draws an analogy from game theory [13]. Game theory has its
origins among physicists, but is now broadly applied to social science issues. Moreo-
ver, the field is characterized by a small number of simple games which have an abid-
ing importance across a broad range of domains: Prisoner’s Dilemma, Tragedy of the
Commons, Battle of the Sexes, etc.

Aldous has noted that the extension of interacting particle systems is also based on
the application of a small number of straightforward models. IPS are characterized by
a common structure:

e A large population of agents — normally taken to represent individuals.

e A network or graph that defines the connections among these individuals. Com-
monly, the edges of this graph are weighted.

e A meeting model that interprets the weights of the edges as the frequency of meet-
ing

¢ A meeting algorithm in which the agents exchange information, possibly changing
their state in the process.

The last point has motivated Aldous to coin the name Finite Markov Information
Exchanges to describe the specialized application of IPS to social science. He notes
that the lack of a common name has probably limited the impact of such research, and
hindered the formation of a community of practice similar to those who work in the
area of game theory.

Aldous defines interaction rates as the symmetric matrix )V, which has zeroes in
the diagonal (agents don’t have meetings with themselves) [14]. The non-diagonal
elements are defined in terms of their meeting rates, vij > 0. In order to use the same



techniques used to characterize Markov chains, V' is assumed to be a stochastic ma-
trix, with normalized rates of interaction, so that:

v, =Y v, =1 forally. (1)
j

Note that, while Aldous defines the diagonal elements equal to zero as part of the
structure of his problem, this is not part of the definition of a stochastic matrix.

NV also defines a geometric substructure for the interactions. It can take on any
form, but Aldous limits his analysis to the most common form. Here we consider only
his first topology, which he terms the complete graph or mean field model. In this
case, every node or agent has an equal likelihood of interacting with every other.
Thus, IV is defined by:

v,=1/(n=1), j#i 2

Aldous also considers other, more complicated topologies including small worlds
or random graphs, but our analysis is limited to this straightforward case.

First consider an explicit description of how continuous time Markov chains are
expressed mathematically. The objective is to define a method for stating the Markov
chain transition probability matrix for a continuous-time Markov chain. Starting with
an analogy that the eigenvalues of an invertible square matrix A are those values of 4;

that solve the equation: ;t" A= ﬂ‘v" where v; = the associated eigenvector. Now, con-
sider a Markov transition process (and associated probability matrix) in which the
system operates in continuous time (but still with a finite, countable state space).
Thus, the transition matrix would not be a matrix of discrete probabilities — the proba-
bilities of moving from one state to another in one time step. It would, rather, be a
continuous function of time, P(¢) such that the probability the system is in state j after
time ¢, given that it is in state i at time 0, is p;(?).

— L0
In order to analyze P(f), a matrix Q is defined such that Pt)=e . This nota-
tion, treating a matrix as an exponent, is a shorthand for an infinite series on the ex-
ponential of Q that is analogous to Euler’s formula:

Q _ .
e” =lim = 3)
¥ow| = k!
We also know the following:
el =) =p" @)
and
d
—P(1)=P()Q )
dt

So, the Q-matrix for a complete graph pattern, in which an agent has equal proba-
bility of interacting with each of its partners, is given by:
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The eigenvalues of this matrix are 0 and —(n +%) . It is important to note that the non-
zero eigenvalues approach unity as n becomes large.

This exposition is important for follow-on analysis. The Markov chain generating
matrix, Q, can be interpreted as a rate-flow matrix in a continuous time Markov chain.
It is also the matrix that generates the Markov chain transition matrix, P. Note that,
while P is a stochastic matrix, Q is not. [15]

5 The *“Leveler Model” — Theoretical Development

Aldous used the structure of continuous-time Markov chains to complete his under-
standing of convergence in a social problem he deemed the “averaging process” [13]
or the “Leveller” problem [14].

In Leveler, each member the population is endowed with an account of ‘wealth’,
which normally begins as differentiated. At each meeting, the two interacting agents
reset their individual wealth to the average of their two accounts. Clearly, over time,
the population will converge to the point where every agent has the same wealth,
especially if all v; > 0 if i # j. In fact, the population will converge to the average
wealth in any case where all states communicate in the Markov Chain transition ma-
trix. Additionally, with this rule all wealth in the system will remain constant, as will
the mean wealth.

This leads to a theoretical result in which, given an unchanging meeting matrix, V,
the population’s convergence — measured as the decay of the standard deviation of
wealth to zero — is defined by the Markov chain processes. To begin, Aldous rewrites
the definition of V" such that it is a matrix of transformation rates in which the rows
sum to zero. Thus, he revises the definition, defining the transition rate from i to j as
v(i,j). From this, he establishes the matrix as:

Vi =Vl # T Vii:_zvij (6)

J#i

This is, of course, no longer a stochastic matrix. In fact, from the theoretical devel-
opment of Markov chain analysis, this is equivalent to the generating matrix, Q [15].
Aldous goes on to develop a theory of convergence rates that depend upon this new
NV, which will be here denoted as Q. Aldous shows that the convergence rate (under
all the previously stated conditions of stationary transition probabilities and finite,



countable states), that, if the convergence is measured in terms of the standard devia-
tion of wealth, it is bounded in its convergence to zero.

The notation used in Aldous is a bit different from that used in normal statistical
treatments. In his initial conditions, Aldous assumes that the average wealth is zero.
This will mean, of course, that the average wealth at all times is zero as the Leveler
process does not change the mean wealth. This simplifies Aldous’s mathematical
notation to the more familiar statistical notation. Given a vector in which the mean

value is 0, that is:
1 n
1350 o
n g

Aldous defines the “norm”, which is equivalent to the standard deviation.

®

Thus, where 0, is the standard deviation of the wealth at time ¢ and o, is the stand-
ard deviation of the wealth at time # = 0, the convergence is determined by:

E[o,(1)]< o™ ©)

where A = the spectral gap of Q. The spectral gap is the distance between the zero
eigenvalue and the next largest eigenvalue, or simply the value of the smallest non-
zero eigenvalue. In this model, as noted above, as n becomes large, the non-zero ei-
genvalues of Q approach unity. Thus, the exponential decay rate in Equation 9 will be
approximately -1/4.

It is important to consider whether this convergence rate, dependent on A is a func-
tion of the number of agents. This depends on how Q is defined, and, thus depends on
the definition of the meeting rates. Moreover, the meeting rates are determined by the
definition of the unit of time. If the rates are set as above, a unit of time is defined as
that amount of time such that, on average, one interaction will take place among the
all the agents in a single unit time. If time were defined in such a way that each agent
would initiate a meeting once per unit time, Q would be a matrix with all non-
diagonal elements equal to one, and the diagonal elements equal to n — 1. The non-
zero eigenvalues of such a matrix would equal —n, and the spectral gap and the con-
vergence rate would certainly vary with the scale of the system. Thus, the definition
of time units becomes a key constituent in moving from the mathematical definition
of the system to its simulation.



6 Extending Analytical Results Through Computational
Modeling

A commonly-used technique in operations research and systems engineering is to start
with a well-developed mathematically-defined system and build a simulation. The
simulation will allow the researcher to relax the assumptions of the model, through
the design of the code, and examine system behavior. In the general case this allows
the operations research analyst to leverage mathematical prediction and extend the
range of quantitative analysis. (Simulation is also used to extend the insights gained
from physical experimentation, further adding to the utility to decision-makers and
the broad confidence non-academic professionals place on simulation.)

Agent-based models also have been used extensively to evaluate the diffusion of
information in a population. Herrmann, et. al., have recently modeled the diffusion of
urgent information (weather warnings or high-profile news events) on a network us-
ing an agent-based model [16]. Hui, et. al. simulated the diffusion of evacuation warn-
ings to a population of agents connected via a network. A simulation approach was
necessary because, as agents evacuated, the network topology would change [17].
Rosval and Sneppen explored the exchange of information in an agent-based model of
a dynamic network [18]. And, Cui and Potok, using an agent-based swarm-type mod-
el of insurgency showed that information exchange among disparate, self-organized
groups can be just as efficient as in a hierarchical insurgency with unified leadership
and strategic planning [19].

7 Varying Activation: Computational Results

The Leveler theoretical model assumes that the meeting matrix or transition matrix N
(or its generating matrix () remains unchanged during the course of the model. It has
no concept of ‘turn’ in which a full population of agents are activated. The model
evolves in ‘secular’ time, and all » agents activate in accordance with their own Pois-
son process. Most of these assumptions are made in order to make this elegant deriva-
tion of the convergence rate as a closed-form inequality possible.

Do these conditions exist in the real world? Aldous cautions researchers who ex-
trapolate these abstract models to real-world movement of knowledge in a population.
Information does not take on well-defined scalar values (such as wealth in the Leveler
model), and individuals find many ways to move information beyond a simple meet-
ing protocol [13].

To capture some of the non-abstract real-world behavior, a Leveler model was cre-
ated in Python. The convergence of wealth — as measured by 0, -- was examined
using different activation schemes:

o Uniform activation creates a sequence of pairs from the population through sam-
pling without replacement. The pairs leveled their wealth when they were activat-
ed. One turn is defined as activating the entire population (in pairs) exactly once.



(Odd-numbered populations will have one inactive agent in each turn, randomly
assigned.)

e Random activation involves selecting pairs of agents from the population with
replacement. A turn is defined as complete when a full population has been acti-
vated, or after n/2 pairs have been selected.

e Poisson required the determination of the activation rate, 4, for each individual
agent. These rates were normalized at the beginning of a turn so that, on average,
one population’s worth of agents would be activated on each turn. Thus, the mean
A would be 1/n. Also at the beginning of a turn, a Poisson process was populated
for each agent in accordance with the individual arrival rate, 4;. These arrival times
were placed in sequence on an ‘activation table’. By design, the average number of
agents on each turn’s activation table was one population’s worth of agents. The
leveling process took place by selecting the agents from the table two at a time. At
the beginning of the next turn, agents’ values of 4; were recomputed. Several rules
are possible to determine this 4;. I chose to make /; proportional to the distance be-
tween the individual agent’s wealth and the mean wealth. Those furthest from the
mean wealth would activate more frequently, those closest to the mean would acti-
vate at a slower value of 4.

¢ Inverse Poisson activation merely reversed the above rule. Those agents closest to
the mean would activate fastest while those furthest from the mean (the richest and
the poorest agents) would be the least likely to ‘share the wealth’.

e Natural. Poisson activation adjusted such that the rate of activation, 4, depends on
the level of poverty, or the inverse of wealth. Thus, the poorest agents would acti-
vate the fastest, and the richest would be the least likely to enter the wealth-
swapping process.

In order to create a distribution of wealth, each agent was endowed with a wealth
‘account’ equal to his index value. Thus, the first agent started with a wealth of 1 and
the 1000™ agent began with a wealth of 1000. Thus, the average wealth was 500.5,
and the initial standard deviation was 288.675. Five runs were conducted for each
activation scheme.

The figure shows the results for the five activation schemes. From inspection, the
different activation schemes resulted in markedly different convergence rates. As the
exponent of decay was the most important for these time series, shows the average
coefficient of the time variable. Note that, for this simulation, time is defined in turns.
In the theoretical construct, turns do not exist and time is defined in terms of the indi-
vidual agents Poisson process.
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Fig. 1. Decay of standard deviation for various activation schemes in the Leveler Model; N =
1000; five runs per activation scheme

Table 1. Decay rate exponent estimate based on linear regression of log(SD)

Decay Rate Experimental Run
Activation 1 2 3 4 5
Raf}dom -0.251 -0.255 -0.251 -0.254 -0.253
Uniform -0.346 0352 -0340 0347 -0347
Poisson -0.457 -0.460 -0.460 -0.454 -0.457
Inverse Poisson

-0.019 -0.020 -0.017 -0.020 -0.020
Natural -0.090 -0.091 -0.094 -0.088 -0.089

Thus, it is clear that these average decay rates differ consistently, and that they are
quite stable once activation has been set. Further, the decay rate from the random
activation process closely tracks the theoretical rate of -1/4. The obvious conclusion
that the runs are different can be confirmed by a Fisher Exact test of any of the five
runs compared with any other of the five runs would give a p-value of 0.004. (This
could have easily been driven smaller with more runs, but the outcome is rather obvi-
ous from Fig. 1 and Table 1.)



8 Conclusions

Agent activation is a neglected aspect of agent model building and evaluation. It is
important to consider multiple activation schemes because, as we have shown here,
the exact method employed has quantitative impact on the model output. Without an
understanding of the role of activation it will be hard to assign causes of variability in
a model, as some of this will undoubtedly be due to how agents are turned on. This
conclusion is valid for single-threaded models, and becomes more problematical as
we move to parallel execution.

The most important result was the replication — through simulation — of the theoret-
ical pattern of decay. The alignment of the random activation scheme decay rate with
the theoretically-predicted value of -1/4 implies that random activation most closely
represents the natural process described in the theoretical model. Agents interact in
accordance with their own, internal “clocks”, unaware of the actions of other agents.
It also validates the conventional definition of a ‘turn’ as a population’s worth of
agent activations. While that definition might have seemed contrived, it does appear
to conform with the system behavior predicted by the MC model.

This result is important because it allows the use of the theory-simulation analytic
paradigm. The theoretical development led to the conclusion that, given the appropri-
ate definitions of time and standard deviation, the mean convergence rate for a
wealth-averaging system should be ‘no greater than’ -1/4. Thus, as the assumptions
about homogeneous, constant activation are relaxed, the impact on convergence can
be observed through simulation. Simulation, therefore, can be used to extend the ana-
lytic reach of theory in such models. And, it has been shown, changing activation
does impact the outcome patterns of this simple model. It is reasonable to assume that
more complex models might see similar differences and experiments should be con-
ducted to investigate such differences.

While it is important merely to show that there are differences, it is also interesting
to note that the differences are not of uniform magnitude. Clearly the inverse Poisson
convergence rate is very much less (in absolute value) than the other convergence
rates. Inverse Poisson activation was based on the assumption that the agents with the
most extreme wealth would enter the wealth-swapping process the slowest.

These results suggest that the choice of activation pattern can become an important
tool for researchers attempting to simulate real-world self-organizing systems. That is,
rather than treating activation as an arbitrary and confounding choice, it can become a
treatment parameter for exploring various emergence phenomena. Often agent-based
models are built in an attempt to mimic real-world behavior. It would not be unusual
for the model-builder to grow acquire data or insights into the real-world activation
patterns of individuals. This might come from theory or there may actually be empiri-
cal data. If, in the real world this data is not stationary, then the researcher would have
a tool to adjust the model structure to match behavior. This is especially true in the
case of endogenous or state-based activation shown here. In fact, most intuitive ex-
pectations for real-world systems would assume that activation would be based on
state: diseased individuals will interact more rarely than healthy people; wealthier



people normally trade stock with greater frequency, etc. If these differences can be
parameterized, the activations schemes denoted here can help create a better model.

A better connection with reality was the motivation for investigating the ‘natural’
activation process. And, its evolution about half-way between the Poisson and inverse
Poisson agrees with an intuitive interpretation. The Poisson process activates the most
extreme agents (the wealthiest and the poorest) the fastest. The inverse Poisson pro-
cess activates them the slowest. The natural process activates half the fastest (the
poorest) and half the slowest (the richest).

The clustering of the convergence rates within the activation types is somewhat of
a surprise, varying much less among runs with the same activation than between runs
with different activation. Clearly activation has a dominant effect on this model’s
variation. Thus, if one were to choose to create a model based on this construct (Lev-
eler has been proposed as a real-world scenario for the movement of gossip across a
population), then various activation schemes should be explored and reported.
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