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ABSTRACT 
A model of a double auction market of zero-intelligence traders 

was replicated as an agent-based model using the same market 

supply and demand curves. The original results were reproduced, 

and these results and other behavior of the model were examined 

under different schemes of agent activation, both exogenous and 

endogenous. While the qualitative differences were typically 

minor, there were statistically significant differences in all the 

measures of all the markets in the original research and important 

divergence in the extended evolution of the simulation. These 

differences have important implications for all follow-on 

replications of a zero-intelligence trading model.  

Categories and Subject Descriptors
F.3.3 [Logics and Meanings of Programs]: Studies of Program

Constructs – program and recursion schemes.

General Terms
Algorithms, Performance, Design, Experimentation, 

Standardization, Theory, Verification. 

Keywords
agent-based simulation, activation, updating, model replication, 

standardization, market design, zero-intelligence traders. 

1. BACKGROUND
Finance is an area of high activity for complexity science and 

agent-based models. It was one of the primary motivations behind 

the founding of the Santa Fe Institute [4]. Agent-based models, 

with their many independent decision-makers, are excellent 

surrogates for traders in a securities market. Agents can be infused 

with a number of different strategies, and global information can 

be made available either market-wide or differentially to only 

select traders.  

One of the simplest market models is the "zero-intelligence trader" 

or ZIT model. Pairs of traders are chosen from a larger body. In 

the most straightforward ZIT models, traders trade a single 

commodity. They cannot access market-wide parameters such as 

the last trade price or the trade price history or even the details of 

their counterparty’s financial position. The traders are not 

completely devoid of knowledge: the sellers know their own cost 

of acquisition, and the buyers know what future price at which 

they can expect to liquidate the asset. (The latter might seem a bit 

artificial, but is analogous to the book value of assets or the 

surrender value of a bond.) The simplicity of the ZIT model 

invites excursions on model format and design, such as studying 

the impact of activation to see if different activation (or updating) 

schemes result in different outcomes or even different policy 

recommendations.   

2.1 On the Choice of the Gode and Sunder Model 
The most referenced ZIT model was introduced by Gode and 

Sunder [2] in an article entitled “Allocative Efficiency of Markets 

with Zero-Intelligence Traders: Market as a Partial Substitute for 

Individual Rationality.” Nearly 1200 scholarly articles have 

referenced Gode and Sunder over the past two decades. They were 

initially researching whether a rule-based double auction market 

simulation would show the same market success as an 

experimental market of actual individuals. They used graduate 

students incentivized by academic grade credits to simulate profit-

motivated traders. They then simulated two double auction 

markets to compare with the real-world experiment. 

2. BOUNDED ZIT MODEL DESCRIPTION
Both simulations began with a small number of traders: six buyers 

and six sellers. Traders trade one ‘share’ at a time. One simulation 

was unbounded, with the buyers and sellers making offers 

randomly selected between 0 and 200. The more rational 

simulation was termed a ‘bounded’ or constrained simulation. The 

buyers have a ‘supply’ curve in which the cost for their next share 

to be sold is determined by an escalating price curve. The sellers 

likewise have a redemption price, at which they may liquidate any 

item they buy. This redemption price curve decreases depending 

upon how many shares the buyers have already. After each trade, 

buyers and sellers calculate their profit. Buyers subtract the cost 

from the trade price, and sellers subtract the trade price from the 

redemption price. Buyers and sellers are bounded in that they are 

not allowed to make an offer that would lose money.  

Gode and Sunder made a three simplifications to a double auction 

model: 

 Only one unit was traded at a time.

 Once a trade took place, all outstanding offers were

canceled.

 If bid and ask offers crossed (seller asked more than

the buyer bid or vice versa), the price was set by that

of the earliest offer.



Buyers are informed ‘privately’ of the redemption value of each 

share. This value, vi, depends on the number of shares the 

individual buyer has already bought. The buyer knows his own 

demand curve, but the market demand curve is not available to 

any trader. Similarly, sellers are endowed with a supply curve that 

represents the cost, ci, of the ith unit sold. This supply curve 

applies to each individual seller and the market supply curve is 

also not known to any trader. Each trade, therefore, created a 

profit. For the seller the profit is the net of the price and the cost, 

i
p c . Similarly, the buyer’s profit is the net of the redemption 

value and the price, 
i

v p . Buyers and sellers form offers at a 

rate and in a sequence determined by the activation scheme. All 

buyers have the same individual demand curve, and all sellers 

have the same individual supply curve. The offer for buyers is a 

random value between 0 and their current redemption value, vi. 

The offer for sellers is a random value between their cost, ci, and 

200. This is what was meant by the bounded market. The 

unbounded market was also examined, but that is not considered 

here. (Nor is the experiment using graduate students.)  

Gode and Sunder conducted six runs of the bounded market, with 

all values reset at the beginning of each run. The runs were 

terminated after 30 seconds. Gode and Sunder examined five 

markets, or five sets of supply and demand curves. These curves 

were described in market-by-market graphs beside the trade price 

series. For the first four markets it was possible to estimate these 

values by inspection, but the fifth market had supply and demand 

curves with a structure with too fine a grain to reliably estimate. 

Only markets one through four were replicated here.   

3. MODEL REPLICATION 
Working in Python, we were able to create a double-auction model 

in which the traders behave in the manner described in the source 

article. In order to perform diagnostics, it was necessary to impose 

some metrics on the dynamic processes of the model. We 

introduced the concept of a turn, which we define lasting as long 

as one full population of traders have generated offers. A turn, 

therefore, is driven by events and not by time. This deviates 

somewhat from the source article, but allows side-by-side 

comparison of a variety of activation schemes (see below).  

Once the turn in which trades take place is recorded, a price series 

Figure 2. Market 2 Trade Price vs. Trade and vs. Turn 

Figure 1. Market 1 Trade Price vs. Trade Number and  vs. Turn 



Figure 3. Market 3 (Uniform) Trade Price vs. Trade  and vs. Turn 

of trades can be observed in market time instead of trade time. The 

Gode and Sunder paper plotted trade price per trade number. Thus, 

they did not observe the fact that later trades occurred much later 

in a run, after many, many offers had been made. See Figure 1 for 

a depiction of this dynamic behavior for Market 1. 

Figure 1 also shows a number of other aspects of our market 

model. Instead of stopping after 30 seconds of execution, we have 

chosen to stop after a constant number of turns. For this graphic, 

we chose 600 turns, but in the full experiments we ran the market 

out to 5000. Even with these extended runs there are still trades 

taking place. That is, even after many turns and many offers are 

generated there is still one buyer or seller who has redemption or 

cost set just above or below the market-clearing price.  

Figure 2 shows a market with the asymmetry in the opposite 

direction – a steeper demand curve and a shallower supply curve. 

In both cases the trades approach the market clearing price from 

the direction of the steepest curve. In Market 1, they approach 

from below because the supply curve is steeper. In Markets 2 and 

3, trades arrive at the market clearing price from above because 

the demand curve is steeper.  

Gode and Sunder were investigating how much of the rationality 

associated with human traders could be attributed to human 

decision-making motivated by profit and intelligence and how 

much is due to simple market discipline – the requirement that a 

seller can’t sell below cost and a buyer can’t buy above 

redemption value. While the bounded market’s appears to be in 

between the random and the human market (by inspection), and 

the bounded market appears to converge to the same equilibrium 

price as the human market (determined by a regression of the 

bounded market curves, averaged over five runs), Gode and 

Sunder measured the outcome with two quantitative measures: 

market efficiency and wealth distribution.  

In the market evolution figures the supply and demand curves for 

each market was determined from the reference paper, but the 

price time series results were from our own replication of this 

double-auction model coded in Python.  

4. ALTERNATIVE ACTIVATION SCHEMES 
In replicating this model, it was possible to postulate a broad 

spectrum of different activation schemes, but not all. There does 

not appear to be an elegant method to implement synchronous 

activation, in which agents’ future states are stored as all agents 

decide, followed by simultaneous state-change. Only 

asynchronous activation was implemented. 

4.1 Random Activation 
There are several suggestions in the original paper that the authors 

chose asynchronous random activation. The initial papers on 

activation were published in the same year (1992) [3, 5], so it is 

not unexpected that Gode and Sunder would not consider 

elaborating on the issue.  

In our instantiation, random activation merely means that traders 

are chosen at random from the set of all traders. These traders 

form an offer. A turn is defined as complete when a number of 

traders equal to the total number of traders has made an offer. No 

data points are collected at the end of one turn, and no values are 

reset. All offers to sell or buy that are in the auction at the end of a 

turn continue in force at the beginning of the next turn. In fact, 

these offers are frequently canceled. The original model design 

had all offers canceled once a trade was complete.  

Initialization and reinitialization:  On the first activation, and 

every time the offers have been canceled, the first trader’s offer 

will establish the new “best offer” of that type. Thus, if a seller is 

chosen first, he will choose a proposed sell price that is a uniform 

random variable between zero and his cost (for this item in his 

inventory sequence). A buyer will, likewise, establish the new 

“best buy” offer. Trading can commence as early as the second 

offer.  

4.2 Uniform Activation 
Asynchronous uniform activation is executed in a manner similar 

to random activation. At the beginning of each turn, the array of 

traders is shuffled. In one turn of uniform activation, all traders 

will be activated. Otherwise, the trade rules are the same: offers 

are carried over from turn to turn, but are canceled once a trade is 

complete. Initialization and reinitialization are conducted in the 

same manner.  

The trade timing plots for market 3are shown for the uniform 

activation scheme. There does not appear to be any significant 

difference in trade timing behavior between random and uniform.  

4.3 Poisson Activation 
Poisson activation is a process in which agents are activated 

according to an exponential distribution with an arrival rate, λA. 

This will mean that activations for any given agent are a Poisson 

process. In its simplest form, a Poisson activation scheme would 

have all agents activated with the same λ. This, however, would 

merely replicate the random selection method so we explore only 

the case of heterogeneous values for λA.  

Poisson activation differs from other asynchronous methods in 

that this variation among the agents can be based on the state of 



each agent or some internal parameter value. For our explorations, 

we chose agent wealth, which was calculated at the beginning of 

each turn. Thus, agent activation rates are made proportional to 

agent wealth values. In order to investigate the ‘leveling’ nature of 

these computer-based trading markets – a key question for the 

original researchers – we chose to make activation rates 

proportional to the absolute distance between the agent’s wealth 

and the average wealth of the population of agents. In that way, 

agents that are at the extremes (rich or poor) will likely trade more 

often. 

In order to make appropriate comparisons between Poisson 

activation and other activation methods, it is necessary to re-

normalize all of the values of λA so that, on average, each turn 

there will be one full population of traders’ activations. we 

accomplish this by building activation time for each agent and 

adding it to an ‘event list’. Trader-agent activation times are drawn 

sequentially from an exponential distribution and each added to 

the previous until the times exceed 1.0. These times are then all 

sorted and the trader agent sequence that results from that is 

passed to the program as a list of activations. Offer-making 

proceeds in accordance with this list for a given turn. At the 

beginning of the next turn the values of λA are again calculated and 

another sequence is generated. The order of each turn’s sequence 

is dependent on the current values of trader wealth and on a 

random draw.  

This process works well once the model is established, but at the 

beginning of the model no trades have taken place and, thus, 

traders have no wealth. In these cases the values of λA are merely 

assigned randomly (and normalized as above). Once one trader 

has acquired some wealth the process can proceed as designed.  

The Poisson process takes advantage of the ‘memoryless’ feature 

of the underlying exponential distribution. Thus, for every trader 

at the beginning of each turn can treat the ‘wait time’ as starting 

anew. It does not matter, given the waiting time is exponentially 

distributed, how long each trader has been waiting since the last 

activation.  

4.4 Inverse Poisson Activation 
The process of activating agents faster if they are further from the 

average has an interesting counterpart: activation rates that favor 

proximity to the average. Thus, we examined a λ–setting process 

that slows down agent activations when the trader wealth is farther 

from the mean wealth. This inverse Poisson activation rate is the 

fourth activation scheme to be examined in the four markets.  

It is important to note that the two Poisson schemes represent a 

conceptual departure from the other two asynchronous schemes. In 

varying the activation rate based on the agent state, we are 

examining endogenous activation. At least one article [1] has 

found that this can show differences in outcome behavior when 

compared with the more normal exogenous activation.  

5. OUTCOME BEHAVIOR METRICS 
Gode and Sunder do not rely heavily on precise quantification of 

the market results. This is consistent with their goal of measuring 

the performance of an automated market against that of a human 

market. They are trying to determine how much market efficiency 

(in profit creation and distribution) is due to the constraints of 

profit and loss rules and how much is due to human trading. Thus, 

they take the unconstrained automated market and the human 

market as two extremes and see where the bounded ZIT market 

falls. They judge that it falls much closer to the human market, but 

this is generally a qualitative judgment.  

We chose to measure three aspects of the constrained ZIT market: 

its efficiency in generating wealth (or profits), its effectiveness in 

evenly allocating wealth among the traders, and the time it takes to 

reach equilibrium. Gode and Sunder used the first two measures in 

their paper, but left the third unexamined.  

5.1 Wealth Generation 
It is a straightforward matter to measure total wealth at the end of 

a run. One of the key (and unstated) influences on this total is the 

length of a run. Gode and Sunder ran a trading ‘day’ for 30 

seconds. In our runs, we made use of the turn structure to better 

standardize the runs, choosing 5000 turns as a standard run.  

The total wealth in the market is compared with the total 

theoretical wealth. Smith’s definition of market efficiency was 

used [6]. Thus, the allocative efficiency of a market is the total 

profits earned in one run (added across all traders at the end of the 

run) divided by the maximum profits available. Actual human 

markets quickly converge to 99% efficiency. Markets only vary 

from this, the authors noted in 1992, when typographic errors in 

market orders create a distortion in the price time series. 

(Considering the events of the past two decades, the Gode and 

Sunder paper could be seen as an important early warning of such 

market ‘errors’.) 

Figure 4. Market 4 (Poisson) Trade Price vs. Trade and vs. Turn 



5.2 Profit Allocation  
The second metric chosen by Gode and Sunder was the profit 

allocation among the traders. To determine this, they calculated 

the cross-sectional root mean squared difference between the 

actual and the equilibrium profits across the traders. They defined 

the value ai as the profits (or total wealth) acquired by trader i. 

They also calculated the theoretical profits for this trader as πi. 

Thus, the dispersion across all traders becomes  

21 ( )
i ii

D a
n

    (1) 

They left unstated how they calculated the equilibrium values. We 

divided equilibrium profits into those for buyers and those for 

sellers. We assumed buyers’ equilibrium profits as the profits they 

could earn if they traded all the shares they could at the market 

clearing price. This, of course, would only include those shares 

with a redemption value above the market clearing price. 

Similarly, the sellers values of πi was determined as the profits a 

seller would earn if all those shares held with costs below the 

market clearing price were sold at the market clearing price. Thus, 

to calculate D, it is necessary to separate the calculation of the sum 

into two parts. More correctly, it should be: 

   
2 21

s s b bs b
D a a

n
          (2) 

Where s = seller s ∈ S and b = buyer b ∈ B and n = the total 

number of traders. This separation is necessary because the supply 

and demand curves are not symmetrical. Sellers’ equilibrium 

profits differ from those of buyers in essentially all markets.  

5.3 Time to Last Trade 
Gode and Sunder did not examine the model behavior over the 

long term for a variety of reasons. They were comparing simulated 

markets with actual human experiments. The human experiments 

had a finite duration because they were limited by many factors 

that are not present in simulations. Thus, the simulated markets 

were truncated and the long-term data are missing (or, in the 

terminology of statistics, the data were ‘censored’).  

We expected to run the markets to exhaustion. That is, we 

experimented with a number of lengths of runs in the random and 

uniform activation types to find a reasonable point at which 

trading ended. We chose a run length of 5000 turns, believing this 

would encompass all trades for all markets and all activations. As 

noted in the result section, there was still censored data even at 

these extended runs. In fact, this represents a major difference 

among the activation schemes. Thus, while we didn’t collect a 

comprehensive set of data, analysis of the turn at which the ‘last 

trade’ took place certainly achieved one of the key goals of this 

project – differentiating among activation schemes.  

6. MODEL RESULTS 
A full spectrum of experiments was run: four activation schemes 

across four markets. Each experiment consisted of 2000 runs of 

the market and activation, with each run including 5000 turns. At 

the end of each run, total wealth, wealth dispersion, and the turn of 

the last trade were recorded.  

Market analysis shows that the exogenous activation schemes run 

to completion and the endogenous schemes (the Poisson activation 

types) still have some trading opportunities available at the end of 

5000 turns. This is most apparent in the results in Figure 7. 

Figure 5. Total Wealth (All Traders) After 5000 Turns – Variable Scale 



Figure 5 shows the four histograms of total wealth for all markets. 

The inverse Poisson activation exhibits extreme values of low 

wealth, but actually bunches much of the wealth closer to the 

maximum value for each market. 

 

Table 1. Mean Total Wealth at End of Run 

Average Total Wealth Market 

Activation 1 2 3 4 

Random 899.0 1016.6 791.6 1497.7 

Uniform 899.2 1017.2 791.7 1498.2 

Poisson 892.2 1003.2 785.4 1480.5 

Inverse 
Poisson 

881.3 999.6 785.1 1488.8 

Max Wealth 900 1020 792 1500 

 

With 2000 runs, it is possible to test the hypothesis that these 

means are drawn from different populations against the null 

hypothesis that the variation is simply due to random errors (and 

that the random errors are normally distributed).  

With four activation schemes there would be sixteen pairwise 

comparisons. It is not necessary to examine these exhaustively to 

see differences among the activation types. As Table 2 shows, 

most of these comparisons are highly significant. Even the 

random-uniform comparisons – the closest averages for all the 

markets – allow the rejection of the null hypothesis for markets 2 

and 4. Note that values that are too small to calculate are reported 

as 0. (While the averages are close, the power of the test is derived 

from the n = 4000 combined data points for the pair.)  

Table 2. p-values for Average Total Wealth 

p-values Market 

Comparison 1 2 3 4 

Random  - 
Uniform 

0.021 1.3X 10-5 0.035 4.1X 10-5 

Random - 
Poisson 

10-200 0 10-213 0 

Random – 
Inverse 
Poisson 

10-242 10-124 10-42 10-31 

Poisson - 
Inverse 
Poisson 

10-102 1.5X 10-7 0.525 10-28 

 

Gode and Sunder compared the total wealth in the simulated 

markets to the maximum total wealth possible. This maximum is 

shown on the final row of the wealth table for each of the four 

markets. Their objective was to compare how close the simulation 

came to maximum wealth with the proximity of the human 

markets. They deemed that their simulations across the four 

markets achieved essentially the same results as the human 

market, with efficiency percentages between 96 and 98%. These 

results were replicated in all markets by all activation types. The 

lowest percentage was 97.9% in the case of the inverse Poisson in 

Market 1.  

Figure 6. Wealth Dispersal, Market 3 (Constant Scale) 



Similar analysis can be conducted on the much more bell-shaped 

wealth dispersion. Wealth dispersion is depicted on the histograms 

on Figure 6. These have all been adjusted so that they appear on 

the same x- and y-axis scales, which we designate with a white 

background. With the scales adjusted, it’s clear that the histograms 

appear significantly different. The Poisson activation histogram 

shows a significantly larger tail than the others. This may not be 

apparent from the small size of the bars on the far right hand side 

of that plot, but the automatic adjustment of the graphing program 

clearly adjusts for larger bins for the Poisson case to accommodate 

the larger range of data.  

 

Table 3. Mean Wealth Dispersion, All Markets, All Models 

Average Wealth Dispersion Market 

Activation 1 2 3 4 

Random 29.2 51.2 54.9 110.3 

Uniform 28.8 50.5 53.2 111.0 

Poisson 31.6 51.9 57.0 102.9 

Inverse 
Poisson 

28.7 51.8 56.8 110.9 

 

While the wealth dispersion appeared to vary little across the runs, 

the large number of runs allowed us to determine that many of 

these differences were statistically significant. Using similar 

calculations to the averages of the wealth, we can develop another 

table of p-values. In this case, somewhat fewer of the pairings 

show differences that are significant. Market 3 shows some 

interesting behavior in that even the random – uniform comparison 

results in a difference that is significant at the 99% confidence 

level. Still, we reject the null hypothesis that the differences 

between these sample means is a product of random fluctuations 

in seven of the 16 cases examined. Activation type makes a 

difference, at least statistically.  

In addition to the odd shape of the Poisson activation histogram, 

it’s also clear that the inverse Poisson activation type has a much 

tighter bunch of averages. The means between the two are quite 

similar (57 and 56.8), but the standard deviation is substantially 

larger for the Poisson activation scheme. In fact, the inverse 

Poisson standard deviation is nearly equal to that of the exogenous 

activation types (random and uniform).  

 

Table 4. p-values Wealth Dispersion 

p-values Market 

Comparison 1 2 3 4 

Random  - 
Uniform 

0.23 0.20 0.002 0.36 

Random - 
Poisson 

10-12 0.278 0 10-27 

Random – 
Inverse Poisson 

0.14 0.28 0.0004 0.457 

Poisson - 
Inverse Poisson 

10-25 0.59 0.67 10-49 

 

Finally, we analyzed the evolution these markets and activation 

schemes over the long term. Gode and Sunder did not consider the 

dynamics of their simulation during extended runs because they 

were comparing them with human traders in finite-time markets. 

We recorded the turn at which the last trade took place before the 

end of run and use this as a metric for market closure. In 

evaluating the results, it appears that 5000 turns was more than 

adequate for the random and uniform activation methods, but that 

Figure 7. Last Trades in 5000 Turns – Variable Scale 



Poisson and inverse Poisson were still exhibiting trading behavior 

late during a 5000-turn run (!). 

Figure 7 shows the behavior of all four last trades for the four 

activation schemes. Clearly, for all markets, the extent of the 

trading varies substantially as the activation type is changed. Not 

only are the histograms of somewhat different shape, the Poisson 

and inverse Poisson clearly have censored trading activity.  

Table 5. Mean Last-Turn Over 2000 Runs 

Mean Turn of Last Trade 
5000- Turn Experiment 

Market 

Activation 1 2 3 4 

Random 1377.2  503.5  415.1  270.0 

Uniform 1273.4  438.3  357.6  234.2 

Poisson 1919.3 1718.9  947.4 1300.1 

Inverse 
Poisson 

2124.9 1927.7 2240.6 1695.1 

 

This phenomenon would affect analysis of any ZIT models, 

especially if trading were cut off after a few hundred turns. It is 

uncertain where Gode and Sunder stopped trading. They set their 

cutoff at 30 seconds of computer time, which itself might be a 

different measure for endogenous than for exogenous activation. 

In executing our simulations, the random and uniform experiments 

take about half the time as the two Poisson activation experiments.  

Table 5 shows a full factorial analysis of the actual values of the 

mean. The sizeable difference can be observed by inspection, but a 

complete analysis of the p-values confirms the statistical 

significance of the result. There is no pairing that has a p-value 

larger than         . Thus, it can be concluded that activation 

makes a potent difference in the later stages of the ZIT model. 

7. CONCLUSIONS 
There are several motivations behind the question: Does activation 

change the outcome of agent-based models? Our simulation 

appears to answer different questions in different ways. 

For the simple issue of analyzing statistical results, the analysis 

shows that for all three metrics (total wealth, wealth dispersion, 

and the last-trade parameter), there are statistically significant 

differences between at least some of the activation schemes, and 

for one metric there are significant differences among all of them.  

We chose a ‘real world’ model – as opposed to a model of abstract 

agents engaged in mathematical game theory – to observe the 

impact of activation differences on policy recommendations. Gode 

and Sunder wanted to determine whether markets are made 

efficient by structural features (such as the requirement to make 

profitable trades) or by the rational decisions of human traders. 

They determined, using qualitative (but quite reasonable) analysis, 

that the constrained ZIT simulation essentially replicated the 

efficiency of the human traders in achieving the total theoretical 

wealth. They also concluded that simulated traders distributed the 

wealth close to but a little more than the human traders, at least in 

the early stages of trading. After a time, the human traders 

dispersed their profits more evenly, but this was undoubtedly due 

to the memory effect. Simulated traders forgot their supply and 

demand curves at the beginning of each experiment. 

Would Gode and Sunder’s conclusions have been different if they 

used different activation schemes? Probably not: 

 All activation schemes and all markets ended with a 

total wealth that was between 97.92 and 99.96% of 

maximum wealth.  

 Profit dispersion has a somewhat higher variance for 

the endogenous activation patterns, so it is possible 

that, given that they only did six runs, the authors 

might have generated outlier results. If they 

increased the number of runs, however, they would 

have returned to their original conclusion (simulated 

ZIT traders produce slightly larger dispersion, but 

far closer to human traders than unconstrained 

trading).  

Gode and Sunder did not examine the question of model 

convergence or trade evolution. Thus, they would not have noticed 

the significant differences that appear in the last-trade statistics 

among the different activation schemes. 

A third motivation for evaluating the importance of activations 

schemes is in establishing a proper standard for research in which 

the agent-based models of one scientific team are replicated by 

subsequent researchers. The Gode and Sunder article was chosen 

because it appeared as a reference in 1171 subsequent articles. 

Clearly, many other researchers are at least working with the 

concept of simulating markets, and many are actually building 

agent-based models using the zero-intelligence trading paradigm. 

(None of those 1171 use the words “Updating” or “Activation” – 

or their derivatives – in the title, so activation is not a major 

research focus in this domain.)  In the research reported above, the 

differential results from last trade analysis alone (if not all the 

results) show that if a replication of ZIT model is expanded 

beyond the work of Gode and Sunder, the results must be shown 

to be robust over different activation schemes. Thus, if agent-

based researchers are to meet the standard of other sciences and 

work on replicating one another’s experimental results, then 

reports of their results must include the activation scheme used in 

the model.  
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