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ABSTRACT

A model of a double auction market of zero-intelligence traders
was replicated as an agent-based model using the same market
supply and demand curves. The original results were reproduced,
and these results and other behavior of the model were examined
under different schemes of agent activation, both exogenous and
endogenous. While the qualitative differences were typically
minor, there were statistically significant differences in all the
measures of all the markets in the original research and important
divergence in the extended evolution of the simulation. These
differences have important implications for all follow-on
replications of a zero-intelligence trading model.

Categories and Subject Descriptors
F.3.3 [Logics and Meanings of Programs]: Studies of Program
Constructs — program and recursion schemes.

General Terms
Algorithms, Performance, Design,
Standardization, Theory, Verification.

Experimentation,

Keywords
agent-based simulation, activation, updating, model replication,
standardization, market design, zero-intelligence traders.

1. BACKGROUND

Finance is an area of high activity for complexity science and
agent-based models. It was one of the primary motivations behind
the founding of the Santa Fe Institute [4]. Agent-based models,
with their many independent decision-makers, are excellent
surrogates for traders in a securities market. Agents can be infused
with a number of different strategies, and global information can
be made available either market-wide or differentially to only
select traders.

One of the simplest market models is the “zero-intelligence trader"
or ZIT model. Pairs of traders are chosen from a larger body. In
the most straightforward ZIT models, traders trade a single
commodity. They cannot access market-wide parameters such as
the last trade price or the trade price history or even the details of
their counterparty’s financial position. The traders are not
completely devoid of knowledge: the sellers know their own cost
of acquisition, and the buyers know what future price at which
they can expect to liquidate the asset. (The latter might seem a bit
artificial, but is analogous to the book value of assets or the
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surrender value of a bond.) The simplicity of the ZIT model
invites excursions on model format and design, such as studying
the impact of activation to see if different activation (or updating)
schemes result in different outcomes or even different policy
recommendations.

2.1 On the Choice of the Gode and Sunder Model

The most referenced ZIT model was introduced by Gode and
Sunder [2] in an article entitled “Allocative Efficiency of Markets
with Zero-Intelligence Traders: Market as a Partial Substitute for
Individual Rationality.” Nearly 1200 scholarly articles have
referenced Gode and Sunder over the past two decades. They were
initially researching whether a rule-based double auction market
simulation would show the same market success as an
experimental market of actual individuals. They used graduate
students incentivized by academic grade credits to simulate profit-
motivated traders. They then simulated two double auction
markets to compare with the real-world experiment.

2. BOUNDED ZIT MODEL DESCRIPTION

Both simulations began with a small number of traders: six buyers
and six sellers. Traders trade one ‘share’ at a time. One simulation
was unbounded, with the buyers and sellers making offers
randomly selected between 0 and 200. The more rational
simulation was termed a ‘bounded’ or constrained simulation. The
buyers have a ‘supply’ curve in which the cost for their next share
to be sold is determined by an escalating price curve. The sellers
likewise have a redemption price, at which they may liquidate any
item they buy. This redemption price curve decreases depending
upon how many shares the buyers have already. After each trade,
buyers and sellers calculate their profit. Buyers subtract the cost
from the trade price, and sellers subtract the trade price from the
redemption price. Buyers and sellers are bounded in that they are
not allowed to make an offer that would lose money.

Gode and Sunder made a three simplifications to a double auction
model:

Only one unit was traded at a time.

e  Once a trade took place, all outstanding offers were
canceled.

e If bid and ask offers crossed (seller asked more than
the buyer bid or vice versa), the price was set by that
of the earliest offer.
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Figure 1. Market 1 Trade Price vs. Trade Number and vs. Turn

Buyers are informed ‘privately’ of the redemption value of each
share. This value, v;, depends on the number of shares the
individual buyer has already bought. The buyer knows his own
demand curve, but the market demand curve is not available to
any trader. Similarly, sellers are endowed with a supply curve that
represents the cost, c;, of the i unit sold. This supply curve
applies to each individual seller and the market supply curve is
also not known to any trader. Each trade, therefore, created a
profit. For the seller the profit is the net of the price and the cost,

p —C, . Similarly, the buyer’s profit is the net of the redemption

value and the price, v, — p. Buyers and sellers form offers at a

rate and in a sequence determined by the activation scheme. All
buyers have the same individual demand curve, and all sellers
have the same individual supply curve. The offer for buyers is a
random value between 0 and their current redemption value, v;.
The offer for sellers is a random value between their cost, c;, and
200. This is what was meant by the bounded market. The
unbounded market was also examined, but that is not considered
here. (Nor is the experiment using graduate students.)

Market 2 Demand & Supply Curves: One Unit at a Time

Zero Intelligence Traders, Eight Runs

Gode and Sunder conducted six runs of the bounded market, with
all values reset at the beginning of each run. The runs were
terminated after 30 seconds. Gode and Sunder examined five
markets, or five sets of supply and demand curves. These curves
were described in market-by-market graphs beside the trade price
series. For the first four markets it was possible to estimate these
values by inspection, but the fifth market had supply and demand
curves with a structure with too fine a grain to reliably estimate.
Only markets one through four were replicated here.

3. MODEL REPLICATION

Working in Python, we were able to create a double-auction model
in which the traders behave in the manner described in the source
article. In order to perform diagnostics, it was necessary to impose
some metrics on the dynamic processes of the model. We
introduced the concept of a turn, which we define lasting as long
as one full population of traders have generated offers. A turn,
therefore, is driven by events and not by time. This deviates
somewhat from the source article, but allows side-by-side
comparison of a variety of activation schemes (see below).

Once the turn in which trades take place is recorded, a price series
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of trades can be observed in market time instead of trade time. The
Gode and Sunder paper plotted trade price per trade number. Thus,
they did not observe the fact that later trades occurred much later
in a run, after many, many offers had been made. See Figure 1 for
a depiction of this dynamic behavior for Market 1.

Figure 1 also shows a number of other aspects of our market
model. Instead of stopping after 30 seconds of execution, we have
chosen to stop after a constant number of turns. For this graphic,
we chose 600 turns, but in the full experiments we ran the market
out to 5000. Even with these extended runs there are still trades
taking place. That is, even after many turns and many offers are
generated there is still one buyer or seller who has redemption or
cost set just above or below the market-clearing price.

Figure 2 shows a market with the asymmetry in the opposite
direction — a steeper demand curve and a shallower supply curve.
In both cases the trades approach the market clearing price from
the direction of the steepest curve. In Market 1, they approach
from below because the supply curve is steeper. In Markets 2 and
3, trades arrive at the market clearing price from above because
the demand curve is steeper.

Gode and Sunder were investigating how much of the rationality
associated with human traders could be attributed to human
decision-making motivated by profit and intelligence and how
much is due to simple market discipline — the requirement that a
seller can’t sell below cost and a buyer can’t buy above
redemption value. While the bounded market’s appears to be in
between the random and the human market (by inspection), and
the bounded market appears to converge to the same equilibrium
price as the human market (determined by a regression of the
bounded market curves, averaged over five runs), Gode and
Sunder measured the outcome with two quantitative measures:
market efficiency and wealth distribution.

In the market evolution figures the supply and demand curves for
each market was determined from the reference paper, but the
price time series results were from our own replication of this
double-auction model coded in Python.

4. ALTERNATIVE ACTIVATION SCHEMES

In replicating this model, it was possible to postulate a broad
spectrum of different activation schemes, but not all. There does
not appear to be an elegant method to implement synchronous
activation, in which agents’ future states are stored as all agents
decide, followed by simultaneous state-change. Only
asynchronous activation was implemented.

4.1 Random Activation

There are several suggestions in the original paper that the authors
chose asynchronous random activation. The initial papers on
activation were published in the same year (1992) [3, 5], so it is
not unexpected that Gode and Sunder would not consider
elaborating on the issue.

In our instantiation, random activation merely means that traders
are chosen at random from the set of all traders. These traders
form an offer. A turn is defined as complete when a number of
traders equal to the total number of traders has made an offer. No
data points are collected at the end of one turn, and no values are
reset. All offers to sell or buy that are in the auction at the end of a
turn continue in force at the beginning of the next turn. In fact,
these offers are frequently canceled. The original model design
had all offers canceled once a trade was complete.

Initialization and reinitialization: On the first activation, and
every time the offers have been canceled, the first trader’s offer
will establish the new “best offer” of that type. Thus, if a seller is
chosen first, he will choose a proposed sell price that is a uniform
random variable between zero and his cost (for this item in his
inventory sequence). A buyer will, likewise, establish the new
“best buy” offer. Trading can commence as early as the second
offer.

4.2 Uniform Activation

Asynchronous uniform activation is executed in a manner similar
to random activation. At the beginning of each turn, the array of
traders is shuffled. In one turn of uniform activation, all traders
will be activated. Otherwise, the trade rules are the same: offers
are carried over from turn to turn, but are canceled once a trade is
complete. Initialization and reinitialization are conducted in the
same manner.

The trade timing plots for market 3are shown for the uniform
activation scheme. There does not appear to be any significant
difference in trade timing behavior between random and uniform.

4.3 Poisson Activation

Poisson activation is a process in which agents are activated
according to an exponential distribution with an arrival rate, 1.
This will mean that activations for any given agent are a Poisson
process. In its simplest form, a Poisson activation scheme would
have all agents activated with the same 1. This, however, would
merely replicate the random selection method so we explore only
the case of heterogeneous values for A,.

Poisson activation differs from other asynchronous methods in
that this variation among the agents can be based on the state of
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each agent or some internal parameter value. For our explorations,
we chose agent wealth, which was calculated at the beginning of
each turn. Thus, agent activation rates are made proportional to
agent wealth values. In order to investigate the ‘leveling’ nature of
these computer-based trading markets — a key question for the
original researchers — we chose to make activation rates
proportional to the absolute distance between the agent’s wealth
and the average wealth of the population of agents. In that way,
agents that are at the extremes (rich or poor) will likely trade more
often.

In order to make appropriate comparisons between Poisson
activation and other activation methods, it is necessary to re-
normalize all of the values of 1, so that, on average, each turn
there will be one full population of traders’ activations. we
accomplish this by building activation time for each agent and
adding it to an ‘event list’. Trader-agent activation times are drawn
sequentially from an exponential distribution and each added to
the previous until the times exceed 1.0. These times are then all
sorted and the trader agent sequence that results from that is
passed to the program as a list of activations. Offer-making
proceeds in accordance with this list for a given turn. At the
beginning of the next turn the values of 4, are again calculated and
another sequence is generated. The order of each turn’s sequence
is dependent on the current values of trader wealth and on a
random draw.

This process works well once the model is established, but at the
beginning of the model no trades have taken place and, thus,
traders have no wealth. In these cases the values of 1, are merely
assigned randomly (and normalized as above). Once one trader
has acquired some wealth the process can proceed as designed.

The Poisson process takes advantage of the ‘memoryless’ feature
of the underlying exponential distribution. Thus, for every trader
at the beginning of each turn can treat the ‘wait time’ as starting
anew. It does not matter, given the waiting time is exponentially
distributed, how long each trader has been waiting since the last
activation.

4.4 Inverse Poisson Activation

The process of activating agents faster if they are further from the
average has an interesting counterpart: activation rates that favor
proximity to the average. Thus, we examined a A-setting process
that slows down agent activations when the trader wealth is farther

from the mean wealth. This inverse Poisson activation rate is the
fourth activation scheme to be examined in the four markets.

It is important to note that the two Poisson schemes represent a
conceptual departure from the other two asynchronous schemes. In
varying the activation rate based on the agent state, we are
examining endogenous activation. At least one article [1] has
found that this can show differences in outcome behavior when
compared with the more normal exogenous activation.

5. OUTCOME BEHAVIOR METRICS

Gode and Sunder do not rely heavily on precise quantification of
the market results. This is consistent with their goal of measuring
the performance of an automated market against that of a human
market. They are trying to determine how much market efficiency
(in profit creation and distribution) is due to the constraints of
profit and loss rules and how much is due to human trading. Thus,
they take the unconstrained automated market and the human
market as two extremes and see where the bounded ZIT market
falls. They judge that it falls much closer to the human market, but
this is generally a qualitative judgment.

We chose to measure three aspects of the constrained ZIT market:
its efficiency in generating wealth (or profits), its effectiveness in
evenly allocating wealth among the traders, and the time it takes to
reach equilibrium. Gode and Sunder used the first two measures in
their paper, but left the third unexamined.

5.1 Wealth Generation

It is a straightforward matter to measure total wealth at the end of
a run. One of the key (and unstated) influences on this total is the
length of a run. Gode and Sunder ran a trading ‘day’ for 30
seconds. In our runs, we made use of the turn structure to better
standardize the runs, choosing 5000 turns as a standard run.

The total wealth in the market is compared with the total
theoretical wealth. Smith’s definition of market efficiency was
used [6]. Thus, the allocative efficiency of a market is the total
profits earned in one run (added across all traders at the end of the
run) divided by the maximum profits available. Actual human
markets quickly converge to 99% efficiency. Markets only vary
from this, the authors noted in 1992, when typographic errors in
market orders create a distortion in the price time series.
(Considering the events of the past two decades, the Gode and
Sunder paper could be seen as an important early warning of such
market ‘errors’.)
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Figure 5. Total Wealth (All Traders) After 5000 Turns — Variable Scale

5.2 Profit Allocation

The second metric chosen by God

allocation among the traders. To determine this, they calculated
the cross-sectional root mean squared difference between the
actual and the equilibrium profits ac
the value a; as the profits (or total
They also calculated the theoretical profits for this trader as z;.
Thus, the dispersion across all traders becomes

o=\ 3 @)

They left unstated how they calculated the equilibrium values. We
divided equilibrium profits into those for buyers and those for
sellers. We assumed buyers’ equilibrium profits as the profits they
could earn if they traded all the shares they could at the market
clearing price. This, of course, would only include those shares
with a redemption value above
Similarly, the sellers values of z; was determined as the profits a
seller would earn if all those shares held with costs below the
market clearing price were sold at th
to calculate D, it is necessary to separate the calculation of the sum
into two parts. More correctly, it should be:

5.3 Time to Last Trade
e and Sunder was the profit

ross the traders. They defined
wealth) acquired by trader i.

)

0 900 1000 1100 1200 1300 1400 1500 1600
Total Wealth,5000 Turns

Gode and Sunder did not examine the model behavior over the
long term for a variety of reasons. They were comparing simulated
markets with actual human experiments. The human experiments
had a finite duration because they were limited by many factors
that are not present in simulations. Thus, the simulated markets
were truncated and the long-term data are missing (or, in the
terminology of statistics, the data were ‘censored’).

We expected to run the markets to exhaustion. That is, we
experimented with a number of lengths of runs in the random and

uniform activation types to find a reasonable point at which

the market clearing price.

e market clearing price. Thus, 6. MODEL RESULTS

o [HT e ) 5a )]

Where s = seller s € S and b = buyer b € B and n = the total
number of traders. This separation is
and demand curves are not symmetrical. Sellers’ equilibrium
profits differ from those of buyers in

@

the last trade were recorded.

necessary because the supply

essentially all markets.

trading ended. We chose a run length of 5000 turns, believing this
would encompass all trades for all markets and all activations. As
noted in the result section, there was still censored data even at
these extended runs. In fact, this represents a major difference
among the activation schemes. Thus, while we didn’t collect a
comprehensive set of data, analysis of the turn at which the ‘last
trade’ took place certainly achieved one of the key goals of this
project — differentiating among activation schemes.

A full spectrum of experiments was run: four activation schemes
across four markets. Each experiment consisted of 2000 runs of
the market and activation, with each run including 5000 turns. At
the end of each run, total wealth, wealth dispersion, and the turn of

Market analysis shows that the exogenous activation schemes run
to completion and the endogenous schemes (the Poisson activation
types) still have some trading opportunities available at the end of
5000 turns. This is most apparent in the results in Figure 7.
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Figure 5 shows the four histograms of total wealth for all markets.
The inverse Poisson activation exhibits extreme values of low
wealth, but actually bunches much of the wealth closer to the
maximum value for each market.

Table 1. Mean Total Wealth at End of Run

Average Total Wealth Market

Activation 1 2 3 4
Random 899.0 1016.6 791.6 1497.7
Uniform 899.2 1017.2 791.7 1498.2
Poisson 892.2 1003.2 785.4 1480.5
Inverse 881.3 999.6 785.1 1488.8
Poisson

Max Wealth 900 1020 792 1500

With 2000 runs, it is possible to test the hypothesis that these
means are drawn from different populations against the null
hypothesis that the variation is simply due to random errors (and
that the random errors are normally distributed).

With four activation schemes there would be sixteen pairwise
comparisons. It is not necessary to examine these exhaustively to
see differences among the activation types. As Table 2 shows,
most of these comparisons are highly significant. Even the
random-uniform comparisons — the closest averages for all the

markets — allow the rejection of the null hypothesis for markets 2
and 4. Note that values that are too small to calculate are reported
as 0. (While the averages are close, the power of the test is derived
from the n = 4000 combined data points for the pair.)

Table 2. p-values for Average Total Wealth

p-values Market

Comparison 1 ) 3 7
Bi?%m _ 0.021 13X10° 0035 41X10°
Random - -200 1028

Poisson 107 0 0
Random —

Inverse 10%% 102 102 10
Poisson - -
Inverse 107 15x107 052 10

Gode and Sunder compared the total wealth in the simulated
markets to the maximum total wealth possible. This maximum is
shown on the final row of the wealth table for each of the four
markets. Their objective was to compare how close the simulation
came to maximum wealth with the proximity of the human
markets. They deemed that their simulations across the four
markets achieved essentially the same results as the human
market, with efficiency percentages between 96 and 98%. These
results were replicated in all markets by all activation types. The
lowest percentage was 97.9% in the case of the inverse Poisson in
Market 1.
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Similar analysis can be conducted on the much more bell-shaped
wealth dispersion. Wealth dispersion is depicted on the histograms
on Figure 6. These have all been adjusted so that they appear on
the same x- and y-axis scales, which we designate with a white
background. With the scales adjusted, it’s clear that the histograms
appear significantly different. The Poisson activation histogram
shows a significantly larger tail than the others. This may not be
apparent from the small size of the bars on the far right hand side
of that plot, but the automatic adjustment of the graphing program
clearly adjusts for larger bins for the Poisson case to accommodate
the larger range of data.

Table 3. Mean Wealth Dispersion, All Markets, All Models

Average Wealth Dispersion Market

Activation 1 2 3 4
Random 29.2 51.2 54.9 110.3
Uniform 28.8 50.5 53.2 111.0
Poisson 31.6 51.9 57.0 102.9
Inverse 28.7 51.8 56.8 110.9
Poisson

While the wealth dispersion appeared to vary little across the runs,
the large number of runs allowed us to determine that many of
these differences were statistically significant. Using similar
calculations to the averages of the wealth, we can develop another
table of p-values. In this case, somewhat fewer of the pairings
show differences that are significant. Market 3 shows some
interesting behavior in that even the random — uniform comparison
results in a difference that is significant at the 99% confidence
level. Still, we reject the null hypothesis that the differences

between these sample means is a product of random fluctuations
in seven of the 16 cases examined. Activation type makes a
difference, at least statistically.

In addition to the odd shape of the Poisson activation histogram,
it’s also clear that the inverse Poisson activation type has a much
tighter bunch of averages. The means between the two are quite
similar (57 and 56.8), but the standard deviation is substantially
larger for the Poisson activation scheme. In fact, the inverse
Poisson standard deviation is nearly equal to that of the exogenous
activation types (random and uniform).

Table 4. p-values Wealth Dispersion

p-values Market

Comparison 1 2 3 4
Random - 0.23 0.20 0.002 0.36
Uniform

Random - 0% 0.278 0 107
Poisson

Random — 0.14 0.28 0.0004 0.457
Inverse Poisson

Poisson - 0% 0.59 0.67 e

Inverse Poisson

Finally, we analyzed the evolution these markets and activation
schemes over the long term. Gode and Sunder did not consider the
dynamics of their simulation during extended runs because they
were comparing them with human traders in finite-time markets.
We recorded the turn at which the last trade took place before the
end of run and use this as a metric for market closure. In
evaluating the results, it appears that 5000 turns was more than
adequate for the random and uniform activation methods, but that



Poisson and inverse Poisson were still exhibiting trading behavior
late during a 5000-turn run (!).

Figure 7 shows the behavior of all four last trades for the four
activation schemes. Clearly, for all markets, the extent of the
trading varies substantially as the activation type is changed. Not
only are the histograms of somewhat different shape, the Poisson
and inverse Poisson clearly have censored trading activity.

Table 5. Mean Last-Turn Over 2000 Runs

Mean Turn of Last Trade Market

5000- Turn Experiment

Activation 1 2 3 4

Random 1377.2 503.5 415.1 270.0
Uniform 1273.4 438.3 357.6 234.2
Poisson 1919.3 1718.9 947.4 1300.1
Inverse 2124.9 1927.7 2240.6 1695.1
Poisson

This phenomenon would affect analysis of any ZIT models,
especially if trading were cut off after a few hundred turns. It is
uncertain where Gode and Sunder stopped trading. They set their
cutoff at 30 seconds of computer time, which itself might be a
different measure for endogenous than for exogenous activation.
In executing our simulations, the random and uniform experiments
take about half the time as the two Poisson activation experiments.

Table 5 shows a full factorial analysis of the actual values of the
mean. The sizeable difference can be observed by inspection, but a
complete analysis of the p-values confirms the statistical
significance of the result. There is no pairing that has a p-value
larger than 5 x 10711, Thus, it can be concluded that activation
makes a potent difference in the later stages of the ZIT model.

7. CONCLUSIONS

There are several motivations behind the question: Does activation
change the outcome of agent-based models? Our simulation
appears to answer different questions in different ways.

For the simple issue of analyzing statistical results, the analysis
shows that for all three metrics (total wealth, wealth dispersion,
and the last-trade parameter), there are statistically significant
differences between at least some of the activation schemes, and
for one metric there are significant differences among all of them.

We chose a ‘real world’ model — as opposed to a model of abstract
agents engaged in mathematical game theory — to observe the
impact of activation differences on policy recommendations. Gode
and Sunder wanted to determine whether markets are made
efficient by structural features (such as the requirement to make
profitable trades) or by the rational decisions of human traders.
They determined, using qualitative (but quite reasonable) analysis,
that the constrained ZIT simulation essentially replicated the
efficiency of the human traders in achieving the total theoretical
wealth. They also concluded that simulated traders distributed the
wealth close to but a little more than the human traders, at least in
the early stages of trading. After a time, the human traders
dispersed their profits more evenly, but this was undoubtedly due

to the memory effect. Simulated traders forgot their supply and
demand curves at the beginning of each experiment.

Would Gode and Sunder’s conclusions have been different if they
used different activation schemes? Probably not:

e All activation schemes and all markets ended with a
total wealth that was between 97.92 and 99.96% of
maximum wealth.

e  Profit dispersion has a somewhat higher variance for
the endogenous activation patterns, so it is possible
that, given that they only did six runs, the authors
might have generated outlier results. If they
increased the number of runs, however, they would
have returned to their original conclusion (simulated
ZIT traders produce slightly larger dispersion, but
far closer to human traders than unconstrained
trading).

Gode and Sunder did not examine the question of model
convergence or trade evolution. Thus, they would not have noticed
the significant differences that appear in the last-trade statistics
among the different activation schemes.

A third motivation for evaluating the importance of activations
schemes is in establishing a proper standard for research in which
the agent-based models of one scientific team are replicated by
subsequent researchers. The Gode and Sunder article was chosen
because it appeared as a reference in 1171 subsequent articles.
Clearly, many other researchers are at least working with the
concept of simulating markets, and many are actually building
agent-based models using the zero-intelligence trading paradigm.
(None of those 1171 use the words “Updating” or “Activation” —
or their derivatives — in the title, so activation is not a major
research focus in this domain.) In the research reported above, the
differential results from last trade analysis alone (if not all the
results) show that if a replication of ZIT model is expanded
beyond the work of Gode and Sunder, the results must be shown
to be robust over different activation schemes. Thus, if agent-
based researchers are to meet the standard of other sciences and
work on replicating one another’s experimental results, then
reports of their results must include the activation scheme used in
the model.
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